Solving directly third-order ODEs using operational matrices of Bernstein polynomials method with applications to fluid flow equations
نویسندگان
چکیده
منابع مشابه
The Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملoperational matrices with respect to hermite polynomials and their applications in solving linear dierential equations with variable coecients
in this paper, a new and ecient approach is applied for numerical approximationof the linear dierential equations with variable coecients based on operational matriceswith respect to hermite polynomials. explicit formulae which express the hermite expansioncoecients for the moments of derivatives of any dierentiable function in terms of theoriginal expansion coecients of the function itse...
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملA New Method Based on Operational Matrices of Bernstein Polynomials for Nonlinear Integral Equations
An approximation method based on operational matrices of Bernstein polynomials used for the solution of Hammerstein integral equations. The operational matrices of these functions are utilized to reduce a nonlinear Hammerstein and Volterra Hammerstein integral equation to a system of nonlinear algebraic equations. The method is computationally very simple and attractive, and applications are de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of King Saud University - Science
سال: 2019
ISSN: 1018-3647
DOI: 10.1016/j.jksus.2018.05.002